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Abstract. We consider an extension of Einstein General Relativity where, beside the Riemann
curvature tensor, we suppose the presence of a torsion tensor. Using a parametrized theory based on
symmetry arguments, we report on some results concerning the constraints that can be put on torsion
parameters by studying the orbits of a test body in the solar system.
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1. Introduction
One of the various generalizations of the Einstein
theory of General Relativity is the so-called Einstein–
Cartan theory [11]: it consists of a spacetime endowed
with a locally Lorentzian metric gλµ and with a com-
patible connection Γ νλµ, not assumed to be symmetric,
so that Γ νλµ is not equal, in general, to Γ νµλ. The
connection Γ νλµ has a curvature tensor, and its lack
of symmetry amounts to the additional presence of a
torsion tensor [4]1 S ν

λµ := 1
2

(
Γ νλµ − Γ νµλ

)
. Γ νµν is

determined uniquely by gµν and by the torsion tensor,

as follows: Γ νλµ =
{
ν

λµ

}
+ S ν

λµ + Sνµλ + Sνλµ, where

{·} is the Levi-Civita connection2.
Usually, the torsion tensor is related to the intrinsic

spin of matter [10, 11]3. Since the spins of elementary
particles in macroscopic matter are usually oriented
in a random way, such theories predict a negligible
amount of torsion generated by massive bodies. As a
consequence, spacetime torsion would be observation-
ally negligible in the solar system. On the other hand,
as pointed out in [15], the existence or nonexistence of
a torsion tensor in the solar system should be tested
experimentally4: for this reason the authors of [15]
developed a parametrized theory based on symmetry
arguments and, computing the precessions of gyro-

1Explicit examples of torsion of a connection compatible
with a Riemannian metric in R2, R3 or in a surface embedded
in R3 can be found for instance in [1, 2, 20]. See also [21] for a
discussion on nonsymmetric connections.

2We recall that for a connection, it is possible to choose
coordinates so that Γ ν

λµ + Γ ν
µλ = 0 [13, Prop. 8.4] at a point.

3In [10] the reader can find an interesting analogy between
torsion and the density of dislocations in crystals.

4In the teleparallel theory of Hayashi and Shirafuji [9] a
massive body generates a torsion field. Gravitational forces are
due entirely to spacetime torsion and not to curvature.

scopes, put constraints on torsion with the Gravity
Probe B experiment.
The aim of this short paper is to report on the

results of [16, 17] concerning the constraints on tor-
sion that can be put by studying the orbits of a test
body in the solar system, following the nonstandard
parametrized approach of [15]. The computations con-
cern torsion corrections to: (i) the orbital geodetic (or
de Sitter) precession, (ii) the precession of the pericen-
ter of a body (a planet) orbiting around a central mass,
(iii) the orbital frame-dragging (or Lense–Thirring)
effect. We then use the measured Moon geodetic pre-
cession, Mercury’s perihelion advance and the data
from the measurements of LAGEOS satellites5, to put
contraints on torsion, looking at the secular perturba-
tions of the orbits.

2. Working assumptions and
autoparallel trajectories

Our main working hypotheses are the following:
(i) Weak field approximation and slow motion of the
test bodies, assumptions probably sufficiently accu-
rate for solar system experiments. (ii) Spherical or
axial symmetry, depending on the situation at hand
(in the case of the Lense–Thirring effect, we suppose
also Earth uniformly rotating, while in the compu-
tation of the de Sitter effect Earth and Sun are sup-
posed to be nonrotating). For example, if m is the
mass of the body, the torsion tensor around a spheri-
cally symmetric body (Sun/Earth) in spherical coordi-
nates (t, r, θ, φ) can be parametrized to second order

5Remember that in General Relativity we have that the
secular precession of the perihelion of Mercury is 43′′/century,
the geodetic precession is 19.2mas/yr, and the Lense–Thirring
effect on the longitude of the nodes of the LAGEOS satellites
is around 31mas/yr.
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in m/r � 1 as

S t
tr = t1

m

2r2 + t3
m2

r3 , S θ
rθ = S φ

rφ = t2
m

2r2 + t4
m2

r3 ,

where t1, t2, t3, t4 are dimensionless torsion parameters
(all other components of the torsion tensor vanish.
Moreover, it turns out that t4 will not enter into
our computations6). In case of a uniformly rotating
spherical body, the expression of the torsion tensor
reads (to second order in m/r) as

S t
tr = t1

m

2r2 , S t
rφ = w1

J

2r2 sin2 θ,

S r
tφ = w3

J

2r2 sin2 θ, S φ
tr = w5

J

2r4 ,

S θ
rθ = S φ

rφ = t2
m

2r2 , S t
θφ = w2

J

2r sin θ cos θ,

S θ
tφ = w4

J

2r3 sin θ cos θ, S φ
tθ = −w4

J

2r3
cos θ
sin θ ,

where w1, . . . , w5 are other torsion parameters, m is
the mass of the rotating body and J its angular mo-
mentum. (iii) Bodies move along (causal) autoparallel
trajectories, namely they satisfy

d2xν

dτ2 + Γ νλµ
dxλ

dτ
dxµ

dτ = 0,

and not along geodesics. This latter assumption is
more questionable; on the other hand, assuming that
the test bodies move along geodesics does not give any
constraint on the torsion parameters. For example,
indicating with m� the mass of the Sun, the system
of autoparallel trajectories (of the Moon) in the case
of computation of the geodetic precession reads as

d2xα

dt2
+m�

(Xα

∆3 −
ξα

ρ3

)
=

2(β − t3)m2
�

(Xα

∆4 −
ξα

ρ4

)
+ (t2 + 2)m�

(∆̇Ẋα

∆2 − ρ̇ξ̇α

ρ2

)
+ 3γm�

(Xα∆̇2

∆3 − ξαρ̇2

ρ3

)
− (2γ + t2)m�

(Xα
∑
σ(Ẋσ)2

∆3 −
ξα
∑
σ(ξ̇σ)2

ρ3

)
,

where ξα, ρ are the heliocentric rectangular coordi-
nates of the Earth, Xα, ∆ are the heliocentric rect-
angular coordinates of the Moon, and xα, r are the
geocentric rectangular coordinates of the Moon. In
the case of the Lense–Thirring effect, the system of

6All torsion parameters are independent of the PPN param-
eters appearing in the expression of the metric.

autoparallel (of a satellite) reads as

d2x

dt2 =− m⊕

r3 x+ J

r5

[
(D +A)xydxdt

+
(
−Dx2 +Ay2 +Bz2) dy

dt + (A−B)yzdzdt

]
,

d2y

dt2 =− m⊕

r3 y − J

r5

[
(D +A)xydydt

+
(
Ax2 −Dy2 +Bz2) dx

dt + (A−B)xzdzdt

]
,

d2z

dt2 =− m⊕

r3 z + J

r5 (D +B)z
[
y
dx
dt − x

dy
dt

]
,

where m⊕ is the mass of the Earth, J its angu-
lar momentum, A = 1 + γ + α1

4 + w1 − w3, B =
−2
(
1 + γ + α1

4
)

+ w2 − w4, D = −
(
1 + γ + α1

4
)
−

w1−w5. It should be noted that from assumption (iii)
it follows that the antisymmetric part of the torsion
tensor cannot be measured (the torsion tensors that
we will consider are not totally antisymmetric). (iv) In
the computation of the geodetic precession we assume
that we can superimpose linearly the metric and tor-
sion fields of Sun and Earth to obtain the global fields.
(v) All computations have been performed by Taylor
expanding in m/r at the required order7.

3. Description of the results
Using perturbative methods in Celestial Mechanics, in
the case of the three-body problem we can constrain
the torsion parameters with the Moon as follows. The
secular precession of node Ω of the satellite orbiting
around Earth turns out to be:

(δΩ)sec = 1
2
m�ν0

ρ

(
1 + 2γ + 3

2 t2
)
t, (1)

where ν0 is the angular velocity of the Earth and t
is time. We observe that (δΩ)sec is independent of
the details of the satellite8. The same right hand side
of Eq. 1 is obtained for the secular precession of the
lunar perigee (δω̃)sec. From these computations, we
find

b ≡ geodetic precession with torsion
geodetic precession in GR

= 1
3(1 + 2γ) + t2

2 .

Using the Lunar Laser Ranging data giving the rela-
tive deviation from GR [23] we find |b− 1| < 0.0064.
Using the Cassini measurement γ = 1 + (2.1± 2.3)×
10−5 [3] gives

|t2| < 0.0128. (2)
7Other assumptions that we make are the following: (vi) Ex-

istence of the Newtonian limit, which fixes t1 = 0. (vii) All
PPN parameters different from γ, β (and α1 in the case of
the Lense–Thirring effect) are negligible. (viii) Test bodies,
such as planets, are supposed to be pointwise, in particular
structureless. (ix) In the computation of secular effects, we
perform time averages over suitably chosen time intervals.

8This remark is important, since it allows to use the result
also in the case of LAGEOS satellites, and to decouple the
geodetic precession from the Lense–Thirring precession.
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Using a two-body computation, we can now constrain
the torsion parameters with Mercury as follows. If ω̃
is the longitude of the pericenter, the secular contri-
bution (δω̃)sec reads as

(δω̃)sec = (2 + 2γ − β + 2t2 + t3) m�

a(1− e2)v,

where a is the semimajor axis of the orbit, e is the
eccentricity and v the true anomaly. Then

B ≡perihelion precession with torsion
perihelion precession in GR

=1
3(2 + 2γ − β + 2t2 + t3).

Using the planetary radar ranging data giving the
relative deviation from GR of 10−3 [22], we find
|B − 1| < 0.001. Using the Cassini measurement one
gets |1− β + t3| < 0.0286. If in addition we assume
β = 1 + (1.2± 1.1)× 10−4 [23], then

|t3| < 0.0286. (3)

In the case of the Lense–Thirring effect, the preces-
sion of the node Ω of LAGEOS reads as

(δΩ)sec = J

a3(1− e2)3/2

(
1 + γ + α1

4 −
w2 − w4

2

)
t,

where a the semimajor axis of the satellite, e the
eccentricity of the orbit and t is time. We then have

bΩ ≡
precession of the node with torsion

precession of the node in GR

=1
2

(
1 + γ + α1

4

)
− w2 − w4

4 .

Using |α1| < 10−4 [24] and the measurements of [5],
we get |bΩ − 0.99| < 0.10 and

− 0.36 < w2 − w4 < 0.44. (4)

Reasoning similarly for the perigee, we eventually have

−0.22 <0.11w1 − 0.20w2 − 0.06w3

+ 0.20w4 + 0.06w5 < 0.42.
(5)

It is worthnothing that Eqs. 4 and 5 are obtained
making use also of the previously obtained estimates
Eqs. 2 and 3.

4. Discussion
Beside the assumptions listed in Section 2, the bounds
Eqs. 2, 3, 4 and 5 rely on the combination of a cer-
tain number of experimental estimates on the PPN
parameters and on the various precessions. They can
be improved as far as the experimental estimates im-
prove.
Estimates Eqs. 2–5 should be coupled with the

estimates obtained in [15] obtained analyzing the pre-
cession of gyroscopes of GPB. These latter estimates
turn out to be different from ours, see [16, 17] for the
details.

5. Future prospects
Before the end of the decade, robotic missions on
the lunar surface could deploy new scientific payloads
which include laser retroreflectors and thus extend
the Lunar Laser Ranging reach for new physics (and
possibly for torsion). In particular, the single, large,
fused-silica retroreflector design developed by the Uni-
versity of Maryland and INFN-LNF [6] could improve
on the performance of current Apollo arrays by a
factor 100 or more.

After the end of this decade, results from the Bepi-
Colombo Mercury orbiter are expected to improve the
classical test of the perihelion advance [19]. The latter
measurement can be cross-checked by new planetary
radar ranging data taken simultaneously with Bepi-
Colombo’s ranging data. Mercury’s special role in
the search for new physics effects, and for spacetime
torsion in particular, is due to the relatively large
value of its eccentricity and to its short distance to
the Sun.
Eventually we observe that the recently approved

JUNO mission to Jupiter [18] will make it possi-
ble, in principle, to attempt a measurement of the
Lense–Thirring effect through JUNO’s node. Hence
such a mission may yield an opportunity to improve
of the constraints on torsion parameters.

6. Conclusions
Estimates Eqs. 2–5 give an order of magnitude of the
torsion tensor; they neither prove nor disprove the
existence of a non-vanishing torsion tensor in the solar
system. A more definite answer could be given by
refining these estimates, taking advantage of future
missions.
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